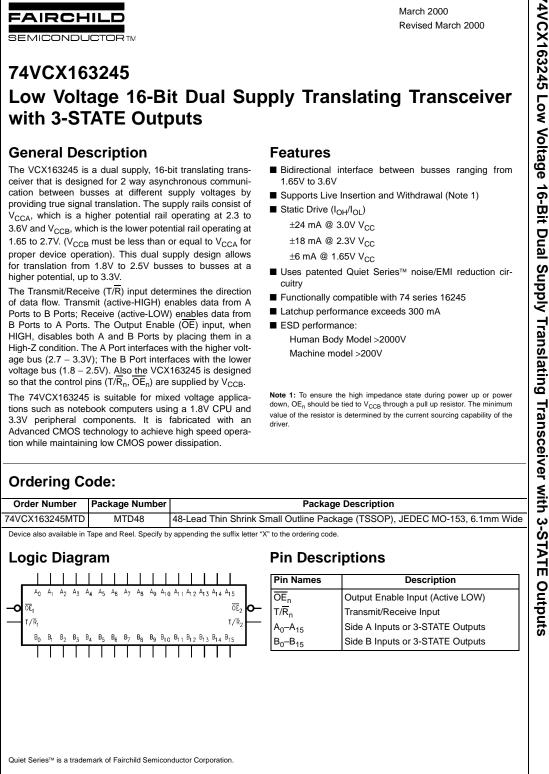
FAIRCHILD

74VCX163245 Low Voltage 16-Bit Dual Supply Translating Transceiver with 3-STATE Outputs

General Description

The VCX163245 is a dual supply, 16-bit translating transceiver that is designed for 2 way asynchronous communication between busses at different supply voltages by providing true signal translation. The supply rails consist of V_{CCA} , which is a higher potential rail operating at 2.3 to 3.6V and V_{CCB} , which is the lower potential rail operating at 1.65 to 2.7V. (V_{CCB} must be less than or equal to V_{CCA} for proper device operation). This dual supply design allows for translation from 1.8V to 2.5V busses to busses at a higher potential, up to 3.3V.

The Transmit/Receive (T/\overline{R}) input determines the direction of data flow. Transmit (active-HIGH) enables data from A Ports to B Ports; Receive (active-LOW) enables data from B Ports to A Ports. The Output Enable (OE) input, when HIGH, disables both A and B Ports by placing them in a High-Z condition. The A Port interfaces with the higher voltage bus (2.7 - 3.3V); The B Port interfaces with the lower voltage bus (1.8 - 2.5V). Also the VCX163245 is designed so that the control pins $(T/\overline{R}_n, \overline{OE}_n)$ are supplied by V_{CCB} .


The 74VCX163245 is suitable for mixed voltage applications such as notebook computers using a 1.8V CPU and 3.3V peripheral components. It is fabricated with an Advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- Bidirectional interface between busses ranging from 1.65V to 3.6V
- Supports Live Insertion and Withdrawal (Note 1)
- Static Drive (I_{OH}/I_{OL}) ±24 mA @ 3.0V V_{CC}
 - \pm 18 mA @ 2.3V V_{CC}
 - ±6 mA @ 1.65V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Functionally compatible with 74 series 16245
- Latchup performance exceeds 300 mA
- ESD performance:
 - Human Body Model >2000V Machine model >200V

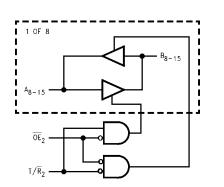
Note 1: To ensure the high impedance state during power up or power down, OE_{n} should be tied to $\mathsf{V}_{\mathsf{CCB}}$ through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver

Ordering Code:

Truth Tables

Inputs		Outpute			
OE ₁	T/R ₁	Outputs			
L	L	Bus $B_0 - B_7$ Data to Bus $A_0 - A_7$			
L	Н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇			
Н	х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇			
Inputs		Quitauta			
OE ₂	T/R ₂	Outputs			
L	L	Bus B ₈ –B ₁₅ Data to Bus A ₈ –A ₁₅			
	н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅			
L	п	Dus $A_8 - A_{15}$ Data to Dus $D_8 - D_{15}$			

L = LOW Voltage Level


X = Immaterial (HIGH or LOW, inputs may not float)

Z = High Impedance

VCX163245 Translator Power Up Sequence Recommendations

To guard against power up problems, some simple guidelines need to be adhered to. The VCX163245 is designed so that the control pins (T/ \overline{R}_n , \overline{OE}_n) are supplied by V_{CCB}. Therefore the first recommendation is to begin by powering up the control side of the device, V_{CCB}. The \overline{OE}_n control pins should be ramped with or ahead of V_{CCB}, this will guard against bus contentions and oscillations as all A Port and B Port outputs will be disabled. To ensure the high impedance state during power up or power down, \overline{OE}_n should be tied to V_{CCB} through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver. Second, the T/ \overline{R}_n control pins should be placed at logic LOW (0V) level, this will ensure that the B-side bus pins are configured as inputs to help guard against bus contention and oscillations. B-side Data Inputs should be driven to a valid logic level (0V or V_{CCB}), this will prevent excessive current draw and oscillations. V_{CCA} can then be powered up after V_{CCB} , however V_{CCA} must be greater than or equal to V_{CCB} to ensure proper device operation. Upon completion of these steps the device can then be configured for the users desired operation. Following these steps will help to prevent possible damage to the translator device as well as other system components.

Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

www.fairchildsemi.com

Logic Diagrams

Absolute Maximum F	Ratings(Note 2)	Recommended Operatin	g		
Supply Voltage		Conditions (Note 4)			
V _{CCA}	-0.5V to +4.6V	Power Supply (Note 5)			
V _{CCB}	-0.5V to V _{CCA}	V _{CCA}	2.3V to 3.6V		
DC Input Voltage (VI)	-0.5V to +4.6V	V _{CCB}	1.65V to 2.7V		
DC Output Voltage (V _{I/O})		Input Voltage (V _I) @ OE, T/R	0V to V _{CCB}		
Outputs 3-STATE	-0.5V to +4.6V	Input/Output Voltage (V _{I/O})			
Outputs Active (Note 3)		A _n	0V to V _{CCA}		
A _n	$-0.5V$ to $V_{\mbox{\scriptsize CCA}}+0.5V$	B _n	0V to V _{CCB}		
B _n	$-0.5V$ to $V_{CCB} + 0.5V$	Output Current in I _{OH} /I _{OL}			
DC Input Diode Current (I _{IK})		$V_{CCA} = 3.0V$ to $3.6V$	±24 mA		
$V_{I} < 0V$	–50 mA	$V_{CCA} = 2.3V$ to 2.7V	±18 mA		
DC Output Diode Current (I _{OK})		$V_{CCB} = 2.3V$ to 2.7V	±18 mA		
V _O < 0V	–50 mA	V _{CCB} = 1.65V to 1.95V	±6 mA		
$V_{O} > V_{CC}$	+50 mA	Free Air Operating Temperature (T _A	$-40^{\circ}C$ to $+85^{\circ}C$		
DC Output Source/Sink Current		Minimum Input Edge Rate ($\Delta t/\Delta V$)			
(I _{OH} /I _{OL})	±50 mA	$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V		
DC V _{CC} or Ground Current	±100 mA	Note 2: The "Absolute Maximum Ratings" are thos			
Supply Pin (I _{CC} or Ground)		the safety of the device cannot be guaranteed. Th operated at these limits. The parametric values d			
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Characteristics tables are not guaranteed at the abs The "Recommended Operating Conditions" table w for actual device operation.	olute maximum ratings.		
		Note 3: I_O Absolute Maximum Rating must be obse	rved.		

Note 4: Unused inputs or I/O pins must be held HIGH or LOW. They may
not float.
Note 5: Operation requires: $V_{CCB} \le V_{CCA}$ DC Electrical Characteristics (1.65V < $V_{CCB} \le 1.95V$, 2.3V < $V_{CCA} \le 2.7V$)

Symbol	Parameter		Conditions	V _{ССВ} (V)	V _{CCA} (V)	Min	Max	Units
V _{IHA}	HIGH Level Input Voltage	A _n		1.65–1.95	2.3–2.7	1.6		V
V _{IHB}		B _n , T/R, OE		1.65-1.95	2.3–2.7	$0.65 \times V_{CC}$		V
V _{ILA}	LOW Level Input Voltage	A _n		1.65-1.95	2.3–2.7		0.7	V
V _{ILB}		B _n , T/R, OE		1.65-1.95	2.3–2.7		0.35 x V _{CC}	V
V _{OHA}	HIGH Level Output Voltag	e	I _{OH} = -100 μA	1.65-1.95	2.3–2.7	V _{CCA} -0.2		V
			I _{OH} = -18 mA	1.65	2.3–2.7	1.7		v
V _{OHB}	HIGH Level Output Voltag	е	I _{OH} = -100 μA	1.65-1.95	2.3–2.7	V _{CCB} -0.2		v
			$I_{OH} = -6 \text{ mA}$	1.65-1.95	2.3	1.25		v
V _{OLA}	Low Level Output Voltage		I _{OL} = 100 μA	1.65-1.95	2.3–2.7		0.2	v
			I _{OL} = 18 mA	1.65	2.3–2.7		0.6	v
V _{OLB}	Low Level Output Voltage		I _{OL} = 100 μA	1.65-1.95	2.3–2.7		0.2	V
			$I_{OL} = 6 \text{ mA}$	1.65-1.95	2.3		0.3	v
I _I	Input Leakage Current @	OE, T/R	$0V \le V_I \le 3.6V$	1.65–1.95	2.3–2.7		±5.0	μA
l _{oz}	3-STATE Output Leakage		$\frac{OV \le V_O \le 3.6V}{\overline{OE}} = V_{CCB}$ $V_I = V_{IH} \text{ or } V_{IL}$	1.65–1.95	2.3–2.7		±10	μA
OFF	Power Off Leakage Currer	nt	$0 \le (V_I, V_O) \le 3.6V$	0	0		10	μA
I _{CCA} /I _{CCB}	Quiescent Supply Current, per supply, V _{CCA} / V _{CCB}	i i i i i i i i i i i i i i i i i i i	$A_n = V_{CCA}$ or GND B_n , \overline{OE} , & T/ $\overline{R} = V_{CCB}$ or GND	1.65–1.95	2.3–2.7		20	μA
			$V_{CCA} \le An \le 3.6V$ $V_{CCB} \le B_n, \overline{OE}, T/\overline{R} \le 3.6V$	1.65–1.95	2.3–2.7		±20	μA
۵I _{CC}	Increase in I _{CC} per Input, I	B _n , T/R, OE	$V_I = V_{CCB} - 0.6V$	1.65–1.95	2.3–2.7		750	μA
	Increase in I _{CC} per Input, /	۹.,	$V_I = V_{CCA} - 0.6V$	1.65-1.95	2.3-2.7	1	750	μA

www.fairchildsemi.com

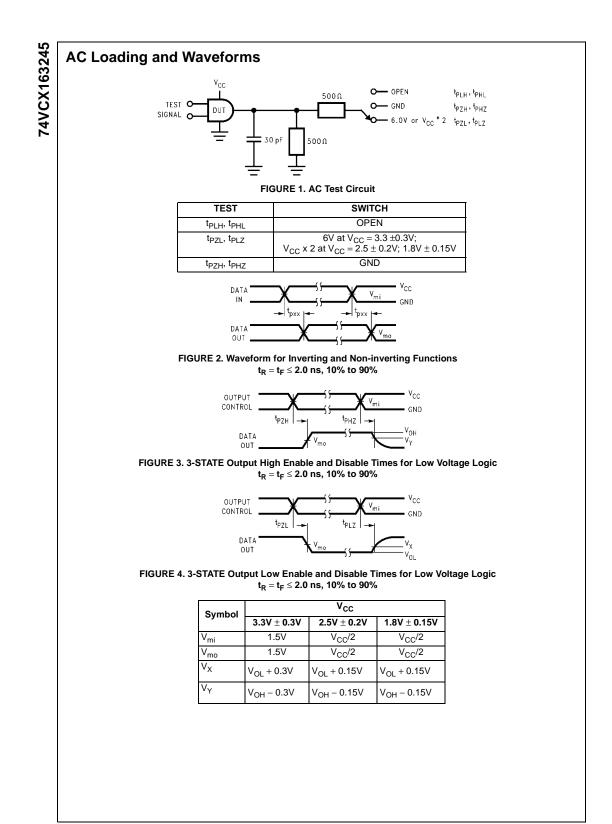
74VCX163245

Symbol	Paramete	r	Conditions	V _{CCB}	V _{CCA} (V)	Min	Max	U
VIHA	HIGH Level Input Voltage	Α.	1	(V) 1.65–1.95	(V) 3.0–3.6	2.0		
	There zerei input reliage	$B_n, T/R, \overline{OE}$		1.65-1.95	3.0-3.6	0.65 x V _{CC}		
VIHB	LOW Level Input Voltage				3.0-3.6	0.03 × VCC	0.8	
V _{ILA}	LOW Level input voltage			1.65-1.95				
VILB		B _n , T/R, OE	1 100 1	1.65-1.95	3.0-3.6	V 0.0	0.35 x V _{CC}	
V _{OHA}	HIGH Level Output Voltag	je	$I_{OH} = -100 \mu\text{A}$	1.65-1.95	3.0-3.6	V _{CCA} -0.2		
1/			$I_{OH} = -24 \text{ mA}$	1.65	3.0-3.6 3.0-3.6	2.2		
V _{OHB}	HIGH Level Output Voltag	Je	$I_{OH} = -100 \mu\text{A}$	1.65-1.95		V _{CCA} -0.2		
V	LOW Level Output Voltag		$I_{OH} = -6 \text{ mA}$ $I_{OI} = 100 \mu\text{A}$	1.65-1.95	3.0 3.0–3.6	1.25	0.2	
V _{OLA}	LOW Level Output Voltag	e	02 ,					
1/			$I_{OL} = 24 \text{ mA}$	1.65	3.0-3.6		0.55	
V _{OLB}	LOW Level Output Voltag	e	$I_{OL} = 100 \mu A$	1.65-1.95	3.0-3.6		0.2	
			I _{OL} = 6 mA	1.65–1.95	3.0		0.3	
<u>ң</u>	Input Leakage Current @		$0V \le V_1 \le 3.6V$	1.65–1.95	3.0–3.6		±5.0	Ļ
I _{OZ}	3-STATE Output Leakage		$0V \le V_0 \le 3.6V$					
			OE* = V _{CCB}	1.65–1.95	3.0–3.6		±10	ŀ
			$V_{I} = V_{IH} \text{ or } V_{IL}$					
I _{OFF}	Power OFF Leakage Cur		$0 \le (V_I, V_O) \le 3.6V$	0	0		10	ŀ
I _{CCA} /I _{CCB}	Quiescent Supply Curren	t,	$A_n = V_{CCA}$ or GND	1.65-1.95	3.0-3.6		20	Ļ
	per supply, V _{CCA} /V _{CCB}		B_n , \overline{OE} , & T/ $\overline{R} = V_{CCB}$ or GND					
			$V_{CCA} \le A_n \le 3.6V$ $V_{CCB} \le B_n, \overline{OE}, T/\overline{R} \le 3.6V$	1.65–1.95	3.0–3.6		±20	ł
41								
ΔI_{CC}	Increase in I _{CC} per Input,	B _n , T/R, OE	$V_I = V_{CCB} - 0.6V$	1.65-1.95	3.0–3.6		750	Ļ
	Increase in I _{CC} per Input,	A _n	$v_{1} = v_{CCB} - 0.6V$ $v_{1} = v_{CCA} - 0.6V$ CS (2.3V < V_{CCB} \leq	1.65–1.95 2.7V, 3	3.0–3.6 8.0V ≤	V _{CCA} -	750	Ļ
	Increase in I _{CC} per Input,	_{An} acteristi	$V_I = V_{CCA} - 0.6V$	1.65–1.95 2.7V, 3 V _{ссв}	3.0–3.6 B.OV ≤ V _{CCA}	V _{CCA} ≤	750	Ļ
DC E	Increase in I _{CC} per Input,	acteristi	v _I = v _{CCA} − 0.6V cs (2.3V < V _{CCB} ≤	1.65–1.95 2.7V, 3	3.0–3.6 8.0V ≤		⁷⁵⁰ ≤ 3.6V)	ļ Ur
DC E Symbol	Increase in I _{CC} per Input, Iectrical Chara Parameter	A _n acteristi	v _I = v _{CCA} − 0.6V cs (2.3V < V _{CCB} ≤	1.65–1.95 2.7V, 3 V _{ссв} (V)	3.0–3.6 B.OV ≤ V _{CCA} (V)	Min	⁷⁵⁰ ≤ 3.6V)	Ur
DC E Symbol V _{IHA} V _{IHB}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage	A_{n} acteristi A_{n} $B_{n}, T/\overline{R}, \overline{OE}$	v _I = v _{CCA} − 0.6V cs (2.3V < V _{CCB} ≤	1.65–1.95 2.7V, 3 V _{ссв} (V) 2.3–2.7 2.3–2.7	3.0–3.6 B.OV ≤ V _{CCA} (V) 3.0–3.6 3.0–3.6	Min 2.0	⁷⁵⁰ ≤ 3.6V)	Ur
DC E Symbol V _{IHA} V _{IHB} V _{ILA}	Increase in I _{CC} per Input, Iectrical Chara Parameter	A_n acteristi A_n $B_n, T/\overline{R}, \overline{OE}$ A_n	v _I = v _{CCA} − 0.6V cs (2.3V < V _{CCB} ≤	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7	3.0–3.6 COV ≤ V _{CCA} (V) 3.0–3.6 3.0–3.6	Min 2.0	750 ≤ 3.6V) Max 0.8	Ur
DC E Symbol V _{IHA} V _{IHB} V _{ILA} V _{ILB}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage	A_{n} acteristi A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ A_{n} $B_{n}, T/\overline{R}, \overline{OE}$	V ₁ = V _{CCA} − 0.6V CS (2.3V < V _{CCB} ≤ Conditions	1.65–1.95 2.7V, 3 V _{ссв} (V) 2.3–2.7 2.3–2.7	3.0–3.6 COV ≤ V _{CCA} (V) 3.0–3.6 3.0–3.6 3.0–3.6	Min 2.0 1.6	750 ≦ 3.6V) Max	Ur
DC E Symbol V _{IHA} V _{IHB} V _{ILA}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage	A_{n} acteristi A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ A_{n} $B_{n}, T/\overline{R}, \overline{OE}$	$V_{I} = V_{CCA} - 0.6V$ CS (2.3V < V _{CCB} \leq Conditions $U_{OH} = -100 \ \mu A$	1.65–1.95 2.7V, 3 V _{CCB} (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0–3.6 CCCA (V) 3.0–3.6 3.0–3.6 3.0–3.6 3.0–3.6 3.0–3.6	Min 2.0 1.6 V VCCA-0.2	750 ≤ 3.6V) Max 0.8	Ur
VIHA VIHB VILA VILB VOHA	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage HIGH Level Output Voltage	$\begin{array}{c} A_{n} \\ \textbf{acteristi} \\ \hline \\ \textbf{a} \\ \textbf{acteristi} \\ \hline \\ \textbf{a}_{n} \\ B_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \hline \\ \textbf{a}_{n} \\ B_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \textbf{ge} \end{array}$	$V_{I} = V_{CCA} - 0.6V$ CS (2.3V < V _{CCB} \leq Conditions $U_{OH} = -100 \ \mu A$ $U_{OH} = -24 \ m A$	1.65–1.95 2.7V, 3 V _{CCB} (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0–3.6 COV ≤ V _{CCA} (V) 3.0–3.6 3.0–3.6 3.0–3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2	750 ≤ 3.6V) Max 0.8	U
DC E Symbol V _{IHA} V _{IHB} V _{ILA} V _{ILB}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage	$\begin{array}{c} A_{n} \\ \textbf{acteristi} \\ \hline \\ \textbf{a} \\ \textbf{acteristi} \\ \hline \\ \textbf{a}_{n} \\ B_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \hline \\ \textbf{a}_{n} \\ B_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \textbf{ge} \end{array}$	$V_{I} = V_{CCA} - 0.6V$ CS (2.3V < V _{CCB} \leq Conditions $I_{OH} = -100 \ \mu A$ $I_{OH} = -24 \ m A$ $I_{OH} = -100 \ \mu A$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 3.0V ≤ V _{CCA} (V) 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8	U
VIHA VIHB VILA VILB VOHA	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage	A_{n} acteristi A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ pe	$V_{I} = V_{CCA} - 0.6V$ CS (2.3V < V _{CCB} \leq Conditions $I_{OH} = -100 \ \mu A$ $I_{OH} = -24 \ m A$ $I_{OH} = -100 \ \mu A$ $I_{OH} = -18 \ m A$	1.65–1.95 2.7V, 3 V _{ССВ} (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 3.0V ≤ V _{CCA} (V) 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2	750 ≤ 3.6V) Max 0.8	U
VIHA VIHB VILA VILB VOHA	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage HIGH Level Output Voltage	A_{n} acteristi A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ pe	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} \ \textbf{(2.3V} < \textbf{V}_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \textbf{I}_{OH} = -100 \ \mu A \\ \textbf{I}_{OH} = -24 \ \textbf{mA} \\ \hline \textbf{I}_{OH} = -100 \ \mu A \\ \textbf{I}_{OH} = -18 \ \textbf{mA} \\ \hline \textbf{I}_{OL} = 100 \ \mu A \end{array}$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 3.	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2	U
VIHA VIHA VILA VILB VOHA VOHA VOHA	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltag HIGH Level Output Voltag	$\begin{array}{c} A_{n} \\ \textbf{acteristi} \\ \textbf{acteristi} \\ \hline \textbf{A}_{n} \\ \hline \textbf{B}_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \hline \textbf{A}_{n} \\ \hline \textbf{B}_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \textbf{ge} \\ \textbf{ge} \\ \textbf{ge} \end{array}$	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} \ \textbf{(2.3V} < \textbf{V}_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \textbf{I}_{OH} = -100 \ \mu A \\ \textbf{I}_{OH} = -24 \ m A \\ \hline \textbf{I}_{OH} = -100 \ \mu A \\ \textbf{I}_{OH} = -18 \ m A \\ \hline \textbf{I}_{OL} = 100 \ \mu A \\ \hline \textbf{I}_{OL} = 24 \ m A \end{array}$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 CCA (V) 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.2 0.55	
VIHA VIHB VILA VILB VOHA	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltage	$\begin{array}{c} A_{n} \\ \textbf{acteristi} \\ \textbf{acteristi} \\ \hline \textbf{A}_{n} \\ \hline \textbf{B}_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \hline \textbf{A}_{n} \\ \hline \textbf{B}_{n}, \textbf{T} / \overline{\textbf{R}}, \overline{\textbf{OE}} \\ \textbf{ge} \\ \textbf{ge} \\ \textbf{ge} \end{array}$	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} (2.3V < V_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \textbf{I}_{OH} = -100 \ \mu \textbf{A} \\ \textbf{I}_{OH} = -24 \ \textbf{mA} \\ \hline \textbf{I}_{OH} = -100 \ \mu \textbf{A} \\ \hline \textbf{I}_{OH} = -18 \ \textbf{mA} \\ \hline \textbf{I}_{OL} = 100 \ \mu \textbf{A} \\ \hline \textbf{I}_{OL} = 24 \ \textbf{mA} \\ \hline \textbf{I}_{OL} = 2100 \ \mu \textbf{A} \\ \hline \textbf{I}_{OL} = 2100 \ \mu \textbf{A} \\ \hline \textbf{I}_{OL} = 200 \ \mu \textbf{A} \\ \hline \textbf{I}_{$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 3.	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2	
VIHA VIHB VILA VILB VOHA VOHA VOHA VOLA VOLB	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltage LOW Level Output Voltage LOW Level Output Voltage	A_n acteristi A_n $B_n, T/\overline{R}, \overline{OE}$ A_n $B_n, T/\overline{R}, \overline{OE}$ ge ge e e	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} \ \textbf{(2.3V} < \textbf{V}_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \textbf{I}_{OH} = -100 \ \mu A \\ \textbf{I}_{OH} = -24 \ m A \\ \hline \textbf{I}_{OH} = -100 \ \mu A \\ \textbf{I}_{OH} = -18 \ m A \\ \hline \textbf{I}_{OL} = 100 \ \mu A \\ \textbf{I}_{OL} = 100 \ \mu A \\ \hline \textbf{I}_{OL} = 100 \ \mu A \\ \hline \textbf{I}_{OL} = 18 \ m A \end{array}$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 CCA (V) 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6	
VIHA VIHA VILA VILB VOHA VOHA VOHA VOLA VOLA I1	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltag HIGH Level Output Voltag LOW Level Output Voltag LOW Level Output Voltag	A_{n} acteristi A_{n} A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ ge	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} (2.3V < V_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \\ I_{OH} = -100 \ \mu\text{A} \\ I_{OH} = -24 \ \text{mA} \\ \hline \\ I_{OH} = -100 \ \mu\text{A} \\ \hline \\ I_{OH} = -18 \ \text{mA} \\ \hline \\ I_{OL} = 100 \ \mu\text{A} \\ \hline \\ I_{OL} = 100 \ \mu\text{A} \\ \hline \\ I_{OL} = 100 \ \mu\text{A} \\ \hline \\ I_{OL} = 18 \ \text{mA} \\ \hline \\ \textbf{OV} \leq V_{I} \leq 3.6V \end{array}$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2	
VIHA VIHB VILA VILB VOHA VOHA VOHA VOLA VOLB	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltage LOW Level Output Voltage LOW Level Output Voltage	A_{n} acteristi A_{n} A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ A_{n} $B_{n}, T/\overline{R}, \overline{OE}$ ge	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7 2.3–2.7	3.0-3.6 CCA (V) 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6	
DC E Symbol V _{IHA} V _{ILA} V _{ILB} V _{OHA} V _{OHA} V _{OHA} V _{OLA} V _{OLB} I ₁ I _{OZ}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltag HIGH Level Output Voltag LOW Level Output Voltag LOW Level Output Voltag Input Leakage Current @ 3-STATE Output Leakage	$\begin{array}{c} A_{n} \\ \hline \\ \textbf{acteristi} \\ \hline \\ \textbf{acteristi} \\ \hline \\ \textbf{acteristic} \\ \hline \hline \hline \\ \textbf{acteristic} \\ \hline \hline \hline \\ \textbf{acteristic} \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \textbf{acteristic} \\ \hline $	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} (2.3V < V_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \\ I_{OH} = -100 \ \mu\text{A} \\ I_{OH} = -24 \ m\text{A} \\ \hline \\ I_{OH} = -100 \ \mu\text{A} \\ \hline \\ I_{OH} = -18 \ m\text{A} \\ \hline \\ I_{OL} = 100 \ \mu\text{A} \\ \hline \\ I_{OL} = 18 \ m\text{A} \\ \hline \\ 0V \leq V_{I} \leq 3.6V \\ \hline \hline \\ \hline \hline \textbf{OE} = V_{CCA} \\ \hline \\ V_{I} = V_{IH} \ or \ V_{IL} \\ \hline \end{array}$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7	3.0-3.6 CCA (V) 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6 ±5.0 ±10	4 Uu
DC E Symbol V _{IHA} V _{ILA} V _{ILB} V _{OHA} V _{OHA} V _{OHA} V _{OLA} V _{OLB} I ₁ I _{OZ}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltag LOW Level Output Voltag LOW Level Output Voltag Input Leakage Current @ 3-STATE Output Leakage	A_n acteristi A_n $B_n, T/\overline{R}, \overline{OE}$ A_n $B_n, T/\overline{R}, \overline{OE}$ $B_n, T/R$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7	3.0-3.6 CCA (V) 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6 ±5.0	4 Uu
DC E Symbol V _{IHA} V _{ILA} V _{ILB} V _{OHA} V _{OHA} V _{OHA} V _{OLA} V _{OLB} I ₁ I _{OZ}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltag LOW Level Output Voltag LOW Level Output Voltag Input Leakage Current @ 3-STATE Output Leakage Power OFF Leakage Current Quiescent Supply Current	A_n acteristi A_n $B_n, T/\overline{R}, \overline{OE}$ A_n $B_n, T/\overline{R}, \overline{OE}$ $B_n, T/R$	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} (2.3V < V_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \\ I_{OH} = -100 \ \mu A \\ I_{OH} = -24 \ m A \\ \hline \\ I_{OH} = -100 \ \mu A \\ \hline \\ I_{OH} = -18 \ m A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 00 \ \mu A \\ \hline I_{OL} = 0$	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7	3.0-3.6 CCA (V) 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6 ±5.0 ±10	
DC E Symbol V _{IHA} V _{ILA} V _{ILB} V _{OHA} V _{OHA} V _{OHA} V _{OLA} V _{OLB} I ₁ I _{OZ}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltag LOW Level Output Voltag LOW Level Output Voltag Input Leakage Current @ 3-STATE Output Leakage	A_n acteristi A_n $B_n, T/\overline{R}, \overline{OE}$ A_n $B_n, T/\overline{R}, \overline{OE}$ $B_n, T/R$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.65–1.95 2.7 V, 3 Vссв (V) 2.3–2.7 0	3.0-3.6 CCA (V) 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6 ±5.0 ±10 10	
DC E Symbol V _{IHA} V _{ILA} V _{ILB} V _{OHA} V _{OHA} V _{OHA} V _{OLA} V _{OLB} I ₁ I _{OZ}	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltag LOW Level Output Voltag LOW Level Output Voltag Input Leakage Current @ 3-STATE Output Leakage Power OFF Leakage Current Quiescent Supply Current per supply, V _{CCA} /V _{CCB}	A_n acteristi A_n $B_n, T/\overline{R}, \overline{OE}$ A_n $B_n, T/\overline{R}, \overline{OE}$ $B_n, T/R$	$\begin{array}{c c} V_{I} = V_{CCA} - 0.6V \\ \hline \textbf{CS} (2.3V < V_{CCB} \leq \\ \hline \textbf{Conditions} \\ \hline \\ I_{OH} = -100 \ \mu A \\ I_{OH} = -24 \ m A \\ \hline \\ I_{OH} = -100 \ \mu A \\ \hline \\ I_{OH} = -100 \ \mu A \\ \hline \\ I_{OH} = -18 \ m A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 24 \ m A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 24 \ m A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 00 \ \mu A \\$	1.65–1.95 2.7 V, 3 Vссв (V) 2.3–2.7 0	3.0-3.6 CCA (V) 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6 ±5.0 ±10 10	μ μ
DC E Symbol V _{IHA} V _{ILB} V _{OHA} V _{OHB} V _{OHB} V _{OLB} I ₁ I ₀ Z	Increase in I _{CC} per Input, Iectrical Chara Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage HIGH Level Output Voltag LOW Level Output Voltag LOW Level Output Voltag Input Leakage Current @ 3-STATE Output Leakage Power OFF Leakage Current Quiescent Supply Current	A_n acteristi A_n $B_n, T/\overline{R}, \overline{OE}$ A_n $B_n, T/\overline{R}, \overline{OE}$ $B_n, T/R$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.65–1.95 2.7V, 3 Vссв (V) 2.3–2.7	3.0-3.6 CV ≤ V _{CCA} (V) 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 3.0-3.6 0 3.0-3.6	Min 2.0 1.6 V _{CCA} -0.2 2.2 V _{CCB} -0.2	750 ≤ 3.6V) Max 0.8 0.7 0.2 0.55 0.2 0.6 ±5.0 ±10 10 20	μ ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν

AC Electrical Characteristics

Symbol			$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to +85°C, $\textbf{C}_{\textbf{L}}=\textbf{30}$ pF, $\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$					
	Parameter	V _{CCB} = 1.6	5V to 1.95V	V _{CCB} = 1.6	5V to 1.95V	V _{CCB} = 2.	3V to 2.7V	Units
	Parameter	V _{CCA} = 2.	$V_{\mbox{\scriptsize CCA}}=2.3V$ to 2.7V		$V_{CCA} = 3.0V$ to $3.6V$		$V_{CCA} = 3.0V$ to $3.6V$	
		Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Prop Delay, A to B	1.5	5.8	1.5	6.2	0.8	4.4	ns
t _{PHL} , t _{PLH}	Prop Delay, B to A	0.8	5.5	0.6	5.1	0.6	4.0	ns
t _{PZL} , t _{PZH}	Output Enable Time, OE to B	1.5	8.3	1.5	8.2	0.8	4.6	ns
t _{PZL} , t _{PZH}	Output Enable Time, OE to A	0.8	5.3	0.6	5.1	0.6	4.0	ns
t _{PLZ} , t _{PHZ}	Output Disable Time, OE to B	0.8	4.6	0.8	4.5	0.8	4.4	ns
t _{PLZ} , t _{PHZ}	Output Disable Time, OE to A	0.8	5.2	0.6	5.6	0.6	4.8	ns
t _{osHL}	Output to Output Skew		5.0		0.5		0.75	ns
t _{osLH}	(Note 6)		3.0		0.5		0.75	115

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tosHL) or LOW-to-HIGH (tosLH).


Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CCB}	V _{CCA}	$T_A = +25^{\circ}C$	Units	
			(V)	(V)	Typical		
V _{OLP}	Quiet Output Dynamic	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	0.25		
	Peak V _{OL} , A to B		1.8	3.3	0.25	V	
			2.5	3.3	0.6		
V _{OLP}	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	0.6		
	Peak V _{OL} , B to A		1.8	3.3	0.8	V	
			2.5	3.3	0.8		
VOLV	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	-0.25		
	Valley V _{OL} , A to B		1.8	3.3	-0.25	V	
			2.5	3.3	-0.6		
V _{OLV}	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	-0.6		
	Valley V _{OL} , B to A		1.8	3.3	-0.8	V	
			2.5	3.3	-0.8		
V _{OHV}	Quiet Output Dynamic	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	1.3		
	Valley V _{OH} , A to B		1.8	3.3	1.3	V	
			2.5	3.3	1.7		
V _{OHV}	Quiet Output Dynamic	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	2.5	1.7		
	Valley V _{OH} , B to A		1.8	3.3	2.0	V	
			2.5	3.3	2.0		

Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
CIN	Input Capacitance	V_{CCB} = 2.5V, V_{CCA} = 3.3V, V_{I} = 0V or $V_{CCA/B}$	5	pF
C _{I/O}	Input/Output Capacitance	V_{CCB} = 2.5V, V_{CCA} = 3.3V, V_{I} = 0V or $V_{CCA/B}$	6	pF
C _{PD}	Power Dissipation Capacitance	$\label{eq:VCCB} \begin{split} V_{CCB} &= 2.5 \text{V}, \ V_{CCA} = 3.3 \text{V}, \ V_{I} = 0 \text{V or } V_{CCA/B} \\ \text{f} &= 10 \text{MHz} \end{split}$	20	pF

74VCX163245

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.	
LIFE SUPPORT POLICY	
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:	

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com